Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Eur J Med Genet ; 68: 104919, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355093

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber disease, is a dominant inherited vascular disorder. The clinical diagnosis is based on the Curaçao criteria and pathogenic variants in the ENG and ACVRL1 genes are responsible for most cases of HHT. Four families with a negative targeted gene panel and selected by a multidisciplinary team were selected and whole-genome sequencing was performed according to the recommendations of the French National Plan for Genomic Medicine. Structural variations were confirmed by standard molecular cytogenetic analysis (FISH). In two families with a definite diagnosis of HHT, we identified two different paracentric inversions of chromosome 9, both disrupting the ENG gene. These inversions are considered as pathogenic and causative for the HHT phenotype of the patients. This is the first time structural variations are reported to cause HHT. As such balanced events are often missed by exon-based sequencing (panel, exome), structural variations may be an under-recognized cause of HHT. Genome sequencing for the detection of these events could be suggested for patients with a definite diagnosis of HHT and in whom no causative pathogenic variant was identified.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Mutation , Endoglin/genetics , Base Sequence , Chromosomes, Human, Pair 9/genetics , Activin Receptors, Type II/genetics
2.
Br J Dermatol ; 180(3): 657-661, 2019 03.
Article in English | MEDLINE | ID: mdl-30022487

ABSTRACT

Focal dermal hypoplasia (FDH, Goltz syndrome, MIM #305600) constitutes a rare multisystem genetic disorder of the skin, skeleton, teeth and eyes with considerable variation in the clinical features. FDH is transmitted as an X-linked dominant trait and is caused by mutations in PORCN. In male children, hemizygous PORCN mutations are lethal in utero. Around 300 cases have been reported in the literature to date. About 10% of them are male patients presenting with either Klinefelter syndrome (karyotype 47, XXY) or mosaicism of a postzygotic mutation. Here we describe four cases of women with typical features of FDH, in whom a PORCN mutation was found in DNA from affected cutaneous tissue but not in DNA from peripheral blood. This study suggests that mosaicism caused by a postzygotic mutation occurs more often than assumed to date in female patients with FDH. A negative analysis performed on peripheral blood DNA does not exclude the diagnosis of FDH and it is therefore of practical importance to analyse DNA from the affected skin in order to identify low-level mosaicism and thus to improve diagnostic precision. In total, we found two missense variants, one novel indel and one novel splice-site variant. Individuals harbouring postzygotic mosaicism run a risk of transmitting the disorder to their daughters, because the maternal mosaic could also affect the gonads.


Subject(s)
Acyltransferases/genetics , Focal Dermal Hypoplasia/genetics , Membrane Proteins/genetics , Mosaicism , Adult , DNA Mutational Analysis , Female , Focal Dermal Hypoplasia/blood , Focal Dermal Hypoplasia/pathology , High-Throughput Nucleotide Sequencing , Humans , Mouth Mucosa/pathology , Skin/pathology , Young Adult , Zygote
3.
Eur J Med Genet ; 62(6): 103529, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30165243

ABSTRACT

With the development of next generation sequencing, beyond identifying the cause of manifestations that justified prescription of the test, other information with potential interest for patients and their families, defined as secondary findings (SF), can be provided once patients have given informed consent, in particular when therapeutic and preventive options are available. The disclosure of such findings has caused much debate. The aim of this work was to summarize all opinion-based studies focusing on SF, so as to shed light on the concerns that this question generate. A review of the literature was performed, focusing on all PubMed articles reporting qualitative, quantitative or mixed studies that interviewed healthcare providers, participants, or society regarding this subject. The methodology was carefully analysed, in particular whether or not studies made the distinction between actionable and non-actionable SF, in a clinical or research context. From 2010 to 2016, 39 articles were compiled. A total of 14,868 people were interviewed (1259 participants, 6104 healthcare providers, 7505 representatives of society). When actionable and non-actionable SF were distinguished (20 articles), 92% of respondents were keen to have results regarding actionable SF (participants: 88%, healthcare providers: 86%, society: 97%), against 70% (participants: 83%, healthcare providers: 62%, society: 73%) for non-actionable SF. These percentages were slightly lower in the specific situation of children probands. For respondents, the notion of the «patient's choice¼ is crucial. For healthcare providers, the importance of defining policies for SF among diagnostic lab, learning societies and/or countries is outlined, in particular regarding the content and extension of the list of actionable genes to propose, the modalities of information, and the access to information about adult-onset diseases in minors. However, the existing literature should be taken with caution, since most articles lack a clear definition of SF and actionability, and referred to hypothetical scenarios with limited information to respondents. Studies conducted by multidisciplinary teams involving patients with access to results are sadly lacking, in particular in the medium term after the results have been given. Such studies would feed the debate and make it possible to measure the impact of such findings and their benefit-risk ratio.


Subject(s)
Choice Behavior , Exome Sequencing/ethics , Genetic Counseling/psychology , Genetic Testing/ethics , Incidental Findings , Stakeholder Participation , Attitude , Disclosure , Genetic Counseling/standards , Humans , Patients/psychology
4.
Am J Med Genet A ; 176(12): 2813-2818, 2018 12.
Article in English | MEDLINE | ID: mdl-30365874

ABSTRACT

Pierpont syndrome is a rare and sporadic syndrome, including developmental delay, facial characteristics, and abnormal extremities. Recently, a recurrent de novo TBL1XR1 variant (c.1337A > G; p.Tyr446Cys) has been identified in eight patients by whole-exome sequencing. A dominant-negative effect of this mutation is strongly suspected, since patients with TBL1XR1 deletion and other variants predicting loss of function do not share the same phenotype. We report two patients with typical Pierpont-like syndrome features. Exome sequencing allowed identifying a de novo heterozygous missense TBL1XR1 variant in both patients, different from those already reported: p.Cys325Tyr and p.Tyr446His. The localization of these mutations and clinical features of Pierpont-like syndrome suggest that their functional consequences are comparable with the recurrent mutation previously described, and provided additional data to understand molecular mechanisms of TBL1XR1 anomalies.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Amino Acid Substitution , Mutation , Nuclear Proteins/genetics , Phenotype , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Adolescent , Alleles , Brain/abnormalities , Brain/diagnostic imaging , Comparative Genomic Hybridization , Facies , Genetic Testing , Genotype , Humans , Magnetic Resonance Imaging , Male , Syndrome , Ultrasonography
6.
Clin Genet ; 94(1): 141-152, 2018 07.
Article in English | MEDLINE | ID: mdl-29574747

ABSTRACT

Wiedemann-Steiner syndrome (WSS) is a rare syndromic condition in which intellectual disability (ID) is associated with hypertrichosis cubiti, short stature, and characteristic facies. Following the identification of the causative gene (KMT2A) in 2012, only 31 cases of WSS have been described precisely in the literature. We report on 33 French individuals with a KMT2A mutation confirmed by targeted gene sequencing, high-throughput sequencing or exome sequencing. Patients' molecular and clinical features were recorded and compared with the literature data. On the molecular level, we found 29 novel mutations. We observed autosomal dominant transmission of WSS in 3 families and mosaicism in one family. Clinically, we observed a broad phenotypic spectrum with regard to ID (mild to severe), the facies (typical or not of WSS) and associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Hypertrichosis cubiti that was supposed to be pathognomonic in the literature was found only in 61% of our cases. This is the largest series of WSS cases yet described to date. A majority of patients exhibited suggestive features, but others were less characteristic, only identified by molecular diagnosis. The prevalence of WSS was higher than expected in patients with ID, suggesting than KMT2A is a major gene in ID.


Subject(s)
Intellectual Disability/diagnosis , Intellectual Disability/etiology , Adolescent , Amino Acid Substitution , Child , Child, Preschool , Disease Susceptibility , Female , France , High-Throughput Nucleotide Sequencing , Histone-Lysine N-Methyltransferase/genetics , Humans , Magnetic Resonance Imaging , Male , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Phenotype , Syndrome , Tomography, X-Ray Computed
7.
Arch Pediatr ; 25(2): 77-83, 2018 Feb.
Article in French | MEDLINE | ID: mdl-29395884

ABSTRACT

INTRODUCTION: The arrival of high-throughput sequencing (HTS) has led to a sweeping change in the diagnosis of developmental abnormalities (DA) with or without intellectual deficiency (ID). With the prospect of deploying these new technologies, two questions have been raised: the representations of HTS among geneticists and the costs incurred due to these analyses. METHODS: Geneticists attending a clinical genetics seminar were invited to complete a questionnaire. The statistical analysis was essentially descriptive and an analysis of costs was undertaken. RESULTS: Of those responding to the questionnaire, 48% had already prescribed exome analysis and 25% had already had the occasion to disclose the results of such analyses. Ninety-six percent were aware that whole-exome sequencing (WES) had certain limits and 74% expressed misgivings concerning its use in medical practice. In parallel, the evaluation of costs showed that WES was less expensive than conventional procedures. DISCUSSION: The survey revealed that geneticists had already come to terms with HTS as early as 2015. Among the major concerns expressed were the complexity of interpreting these tests and the many ethical implications. Geneticists seemed to be aware of the advantages but also the limits of these new technologies. The cost analysis raises questions about the place of HTS and in particular WES in the diagnostic work-up: should it be used early to obtain an etiological diagnosis rather than as the last resort? CONCLUSION: It is essential for future generations of doctors and for the families concerned to learn about the concepts of HTS, which is set to become a major feature of new genomic medicine.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Genetics, Medical , High-Throughput Nucleotide Sequencing , Practice Patterns, Physicians' , Adolescent , Child , Female , France , Health Care Surveys , Humans , Male
8.
Clin Genet ; 92(2): 188-198, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28155230

ABSTRACT

BACKGROUND: Alterations in GFER gene have been associated with progressive mitochondrial myopathy, congenital cataracts, hearing loss, developmental delay, lactic acidosis and respiratory chain deficiency in 3 siblings born to consanguineous Moroccan parents by homozygosity mapping and candidate gene approach (OMIM#613076). Next generation sequencing recently confirmed this association by the finding of compound heterozygous variants in 19-year-old girl with a strikingly similar phenotype, but this ultra-rare entity remains however unknown from most of the scientific community. MATERIALS AND METHODS: Whole exome sequencing was performed as part of a "diagnostic odyssey" for suspected mitochondrial condition in 2 patients, presenting congenital cataracts, progressive encephalomyopathy and hypotrophy and detected unreported compound heterozygous variants in GFER. RESULTS: Thanks to an international data sharing, we found 2 additional patients carrying compound heterozygous variants in GFER. Reverse phenotyping confirmed the phenotypical similarities between the 4 patients. Together with the first literature reports, the review of these 8 cases from 4 unrelated families enables us to better describe this apparently homogeneous disorder, with the clinical and biological stigmata of mitochondrial disease. CONCLUSION: This report highlights the clinical utility of whole exome sequencing and reverse phenotyping for the diagnosis of ultra-rare diseases and underlines the importance of a broad data sharing for accurate clinical delineation of previously unrecognized entities.


Subject(s)
Cytochrome Reductases/genetics , Exome Sequencing , Genetic Predisposition to Disease , Mitochondrial Encephalomyopathies/genetics , Adolescent , Adult , Child , Female , Heterozygote , Humans , Male , Mitochondrial Encephalomyopathies/physiopathology , Mutation , Oxidoreductases Acting on Sulfur Group Donors , Pedigree , Young Adult
9.
Clin Genet ; 91(6): 908-912, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27861764

ABSTRACT

Proximal 16p11.2 microdeletions are recurrent microdeletions with an overall prevalence of 0.03%. In patients with segmentation defects of the vertebra (SDV), a burden of this microdeletion was observed with TBX6 as a candidate gene for SDV. In a published cohort of patients with congenital scoliosis (CS), TBX6 haploinsufficiency was compound heterozygous with a common haplotype. Besides, a single three-generation family with spondylocostal dysostosis (SCD) was reported with a heterozygous stop-loss of TBX6. These observations questioned both on the inheritance mode and on the variable expressivity associated with TBX6-associated SDV. Based on a national recruitment of 56 patients with SDV, we describe four patients with variable SDV ranging from CS to SCD associated with biallelic variations of TBX6. Two patients with CS were carrying a proximal 16p11.2 microdeletion associated with the previously reported haplotype. One patient with extensive SDV was carrying a proximal 16p11.2 microdeletion associated with a TBX6 rare missense change. One patient with a clinical diagnosis of SCD was compound heterozygous for two TBX6 rare missense changes. The three rare variants were affecting the chromatin-binding domain. Our data illustrate the variable expressivity of recessive TBX6 ranging from CS to SCD.


Subject(s)
Abnormalities, Multiple/genetics , Genetic Predisposition to Disease , Hernia, Diaphragmatic/genetics , Scoliosis/genetics , T-Box Domain Proteins/genetics , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/physiopathology , Child , Child, Preschool , Female , Genotype , Haplotypes , Hernia, Diaphragmatic/diagnostic imaging , Hernia, Diaphragmatic/physiopathology , Humans , Infant , Male , Mutation , Pedigree , Scoliosis/diagnostic imaging , Scoliosis/physiopathology , Spine/diagnostic imaging , Spine/physiopathology
10.
Clin Genet ; 91(3): 431-440, 2017 03.
Article in English | MEDLINE | ID: mdl-27062609

ABSTRACT

Several genes have been implicated in Rett syndrome (RTT) in its typical and variant forms. We applied next-generation sequencing (NGS) to evaluate for mutations in known or new candidate genes in patients with variant forms of Rett or Rett-like phenotypes of unknown molecular aetiology. In the first step, we used NGS with a custom panel including MECP2, CDKL5, FOXG1, MEF2C and IQSEC2. In addition to a FOXG1 mutation in a patient with all core features of the congenital variant of RTT, we identified a missense (p.Ser240Thr) in CDKL5 in a patient who appeared to be seizure free. This missense was maternally inherited with opposite allele expression ratios in the proband and her mother. In the asymptomatic mother, the mutated copy of the CDKL5 gene was inactivated in 90% of blood cells. We also identified a premature stop codon (p.Arg926*) in IQSEC2 in a patient with a Rett-like phenotype. Finally, exome sequencing enabled us to characterize a heterozygous de novo missense (p.Val408Ala) in KCNA2 encoding the potassium channel Kv 1.2 in a girl with infantile-onset seizures variant of RTT. Our study expands the genetic heterogeneity of RTT and RTT-like phenotypes. Moreover, we report the first familial case of CDKL5-related disease.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Kv1.2 Potassium Channel/genetics , Protein Serine-Threonine Kinases/genetics , Rett Syndrome/genetics , Adolescent , Child, Preschool , Codon, Nonsense , Exome/genetics , Female , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Mutation , Phenotype , Rett Syndrome/physiopathology
11.
Br J Dermatol ; 176(1): 204-208, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27095246

ABSTRACT

Papillomatous pedunculated sebaceous naevus (PPSN) has been described as a subtype of sebaceous naevus (SN), typically affecting the scalp and face. In contrast with Schimmelpenning syndrome, no cerebral, ocular or skeletal anomalies have hitherto been reported. We report two unrelated fetuses with PPSN, one with large pink exophytic tumours, the other with minor features but similar microscopic findings. We performed whole-exome sequencing in affected skin tissue from fetus 1, which identified a postzygotic de novo FGFR2 c.1144T>C (p.Cys382Arg) mutation in 34·6% of reads which was absent in the parents' blood. Targeted deep sequencing of FGFR2 confirmed its mosaic status in additional affected skin from fetus 1, and identified the same substitution in 26% of reads in affected skin from fetus 2. FGFR2 p.Cys382Arg is a known somatic driver mutation in human cancer, previously reported to result in activation of RAS signalling. A similar paralogous missense mutation in the transmembrane domain of FGFR3 (p.Gly380Arg) has been reported in keratinocytic epidermal naevi. Our findings define a distinct clinical and molecular subgroup of SN, beside HRAS or KRAS-related SN, and expand the spectrum of mosaic skin conditions associated with receptor tyrosine kinase mutations.


Subject(s)
Mosaicism , Mutation, Missense/genetics , Nevus, Sebaceous of Jadassohn/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Skin Neoplasms/genetics , Abortion, Induced , Adult , Female , Fetal Death , Humans , Infant, Newborn , Pregnancy , Receptor, Fibroblast Growth Factor, Type 3/genetics
12.
Clin Genet ; 91(1): 92-99, 2017 01.
Article in English | MEDLINE | ID: mdl-27102954

ABSTRACT

THOC6 is a part of the THO complex, which is involved in coordinating mRNA processing with export. The THO complex interacts with additional components to form the larger TREX complex (transcription export complex). Previously, a homozygous missense mutation in THOC6 in the Hutterite population was reported in association with syndromic intellectual disability. Using exome sequencing, we identified three unrelated patients with bi-allelic mutations in THOC6 associated with intellectual disability and additional clinical features. Two of the patients were compound heterozygous for a stop and a missense mutation, and the third was homozygous for a missense mutation; the missense mutations were predicted to be pathogenic by in silico analysis and modeling. Clinical features of the three newly identified patients and those previously reported are reviewed; intellectual disability is moderate to severe, and malformations are variable including renal and heart defects, cleft palate, microcephaly, and corpus callosum dysgenesis. Facial features are variable and include tall forehead, short upslanting palpebral fissures +/- deep set eyes, and a long nose with overhanging columella. These subtle facial features render the diagnosis difficult to make in isolation with certainty. Our results expand the mutational and clinical spectrum of this rare disease, confirm that THOC6 is an intellectual disability causing gene, while providing insight into the importance of the THO complex in neurodevelopment.


Subject(s)
Genetic Predisposition to Disease/genetics , Intellectual Disability/genetics , Mutation, Missense , RNA-Binding Proteins/genetics , Adolescent , Child , Exome/genetics , Female , Genes, Recessive , Genotype , Humans , Intellectual Disability/pathology , Male , Models, Molecular , Phenotype , Protein Domains , RNA-Binding Proteins/chemistry , Sequence Analysis, DNA/methods , Severity of Illness Index , Syndrome
13.
Clin Genet ; 91(2): 333-338, 2017 02.
Article in English | MEDLINE | ID: mdl-27103078

ABSTRACT

We report on a boy with a rare malformative association of scrotum agenesis, ophthalmological anomalies, cerebellar malformation, facial dysmorphism and global development delay. The reported patient was carrying a homozygous frameshift in MAB21L1 detected by whole-exome sequencing, considered as the most likely disease-causing variant. Mab21l1 knockout mice present a strikingly similar malformative association of ophthalmological malformations of the anterior chamber and preputial glands hypoplasia. We hypothesize that MAB21L1 haploinsufficiency cause a previously undescribed syndrome with scrotal agenesis, ophthalmological anomalies, facial dysmorphism and gross psychomotor delay as remarkable hallmarks. Four cases from the literature were reported with features suggestive of a similar and recognizable clinical entity. We hypothesize that MAB21L1 should be the culprit gene in these patients.


Subject(s)
Abnormalities, Multiple/genetics , Developmental Disabilities/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Abnormalities, Multiple/pathology , Animals , Child , Developmental Disabilities/pathology , Exome/genetics , Frameshift Mutation/genetics , Homozygote , Humans , Intellectual Disability/pathology , Male , Mice , Mutation , Phenotype , Scrotum/pathology
14.
Clin Genet ; 91(4): 576-588, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27761913

ABSTRACT

Duplication of the Xq28 region, involving MECP2 (dupMECP2), has been primarily described in males with severe developmental delay, spasticity, epilepsy, stereotyped movements and recurrent infections. Carrier mothers are usually asymptomatic with an extremely skewed X chromosome inactivation (XCI) pattern. We report a series of six novel symptomatic females carrying a de novo interstitial dupMECP2, and review the 14 symptomatic females reported to date, with the aim to further delineate their phenotype and give clues for genetic counselling. One patient was adopted and among the other 19 patients, seven (37%) had inherited their duplication from their mother, including three mildly (XCI: 70/30, 63/37, 100/0 in blood and random in saliva), one moderately (XCI: random) and three severely (XCI: uninformative and 88/12) affected patients. After combining our data with data from the literature, we could not show a correlation between XCI in the blood or duplication size and the severity of the phenotype, or explain the presence of a phenotype in these females. These findings confirm that an abnormal phenotype, even severe, can be a rare event in females born to asymptomatic carrier mothers, making genetic counselling difficult in couples at risk in terms of prognosis, in particular in prenatal cases.


Subject(s)
Gene Duplication , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Adolescent , Adult , Child , Chromosomes, Human, X/genetics , Female , Genetic Counseling , Humans , Intellectual Disability/physiopathology , Male , Mental Retardation, X-Linked/physiopathology , Pedigree , Phenotype
15.
Clin Genet ; 90(6): 509-517, 2016 12.
Article in English | MEDLINE | ID: mdl-27060890

ABSTRACT

The 13 subtypes of oral-facial-digital syndrome (OFDS) belong to the heterogeneous group of ciliopathies. Disease-causing genes encode for centrosomal proteins, components of the transition zone or proteins implicated in ciliary signaling. A unique consanguineous family presenting with an unclassified OFDS with skeletal dysplasia and brachymesophalangia was explored. Homozygosity mapping and exome sequencing led to the identification of a homozygous mutation in IFT57, which encodes a protein implicated in ciliary transport. The mutation caused splicing anomalies with reduced expression of the wild-type transcript and protein. Both anterograde ciliary transport and sonic hedgehog signaling were significantly decreased in subjects' fibroblasts compared with controls. Sanger sequencing of IFT57 in 13 OFDS subjects and 12 subjects with Ellis-Van Creveld syndrome was negative. This report identifies the implication of IFT57 in human pathology and highlights the first description of a ciliary transport defect in OFDS, extending the genetic heterogeneity of this subgroup of ciliopathies.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Ciliopathies/genetics , Craniofacial Abnormalities/genetics , Dwarfism/genetics , Ear/abnormalities , Neck/abnormalities , Orofaciodigital Syndromes/genetics , Thorax/abnormalities , Adolescent , Adult , Ciliopathies/physiopathology , Consanguinity , Craniofacial Abnormalities/physiopathology , Dwarfism/physiopathology , Ear/physiopathology , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/physiopathology , Exome/genetics , Female , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Male , Mutation , Neck/physiopathology , Orofaciodigital Syndromes/physiopathology , Phenotype , Thorax/physiopathology , Young Adult
16.
Clin Genet ; 89(6): 700-7, 2016 06.
Article in English | MEDLINE | ID: mdl-26757139

ABSTRACT

The current standard of care for diagnosis of severe intellectual disability (ID) and epileptic encephalopathy (EE) results in a diagnostic yield of ∼50%. Affected individuals nonetheless undergo multiple clinical evaluations and low-yield laboratory tests often referred to as a 'diagnostic odyssey'. This study was aimed at assessing the utility of clinical whole-exome sequencing (WES) in individuals with undiagnosed and severe forms of ID and EE, and the feasibility of its implementation in routine practice by a small regional genetic center. We performed WES in a cohort of 43 unrelated individuals with undiagnosed ID and/or EE. All individuals had undergone multiple clinical evaluations and diagnostic tests over the years, with no definitive diagnosis. Sequencing data analysis and interpretation were carried out at the local molecular genetics laboratory. The diagnostic rate of WES reached 32.5% (14 out of 43 individuals). Genetic diagnosis had a direct impact on clinical management in four families, including a prenatal diagnostic test in one family. Our data emphasize the clinical utility and feasibility of WES in individuals with undiagnosed forms of ID and EE and highlight the necessity of close collaborations between ordering physicians, molecular geneticists, bioinformaticians and researchers for accurate data interpretation.


Subject(s)
Exome/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Neurodevelopmental Disorders/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Diagnostic Tests, Routine/methods , Diagnostic Tests, Routine/trends , Epilepsy/diagnosis , Epilepsy/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Male , Neurodevelopmental Disorders/diagnosis , Polymorphism, Single Nucleotide , Reproducibility of Results , Sensitivity and Specificity , Young Adult
17.
Clin Genet ; 89(5): 630-5, 2016 05.
Article in English | MEDLINE | ID: mdl-26582393

ABSTRACT

Microarray-based comparative genomic hybridization (aCGH) is commonly used in diagnosing patients with intellectual disability (ID) with or without congenital malformation. Because aCGH interrogates with the whole genome, there is a risk of being confronted with incidental findings (IF). In order to anticipate the ethical issues of IF with the generalization of new genome-wide analysis technologies, we questioned French clinicians and cytogeneticists about the situations they have faced regarding IF from aCGH. Sixty-five IF were reported. Forty corresponded to autosomal dominant diseases with incomplete penetrance, 7 to autosomal dominant diseases with complete penetrance, 14 to X-linked diseases, and 4 were heterozygotes for autosomal recessive diseases with a high prevalence of heterozygotes in the population. Therapeutic/preventive measures or genetic counselling could be argued for all cases except four. These four IF were intentionally not returned to the patients. Clinicians reported difficulties in returning the results in 29% of the cases, mainly when the question of IF had not been anticipated. Indeed, at the time of the investigation, only 48% of the clinicians used consents mentioning the risk of IF. With the emergence of new technologies, there is a need to report such national experiences; they show the importance of pre-test information on IF.


Subject(s)
Comparative Genomic Hybridization/methods , Genetic Counseling/ethics , Genetic Counseling/methods , Incidental Findings , Disclosure/ethics , Female , France , Genes, Dominant/genetics , Genes, Recessive/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Humans , Male , Microarray Analysis/methods , Physician-Patient Relations/ethics , Retrospective Studies , Surveys and Questionnaires
18.
Clin Genet ; 89(4): 501-506, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26497935

ABSTRACT

SHORT syndrome has historically been defined by its acronym: short stature (S), hyperextensibility of joints and/or inguinal hernia (H), ocular depression (O), Rieger abnormality (R) and teething delay (T). More recently several research groups have identified PIK3R1 mutations as responsible for SHORT syndrome. Knowledge of the molecular etiology of SHORT syndrome has permitted a reassessment of the clinical phenotype. The detailed phenotypes of 32 individuals with SHORT syndrome and PIK3R1 mutation, including eight newly ascertained individuals, were studied to fully define the syndrome and the indications for PIK3R1 testing. The major features described in the SHORT acronym were not universally seen and only half (52%) had four or more of the classic features. The commonly observed clinical features of SHORT syndrome seen in the cohort included intrauterine growth restriction (IUGR) <10th percentile, postnatal growth restriction, lipoatrophy and the characteristic facial gestalt. Anterior chamber defects and insulin resistance or diabetes were also observed but were not as prevalent. The less specific, or minor features of SHORT syndrome include teething delay, thin wrinkled skin, speech delay, sensorineural deafness, hyperextensibility of joints and inguinal hernia. Given the high risk of diabetes mellitus, regular monitoring of glucose metabolism is warranted. An echocardiogram, ophthalmological and hearing assessments are also recommended.

19.
Clin Genet ; 89(5): e1-4, 2016 May.
Article in English | MEDLINE | ID: mdl-26660953

ABSTRACT

The acidic fibroblast growth factor (FGF) intracellular binding protein (FIBP) interacts directly with the fibroblast growth factor FGF1. Although FIBP is known to be implicated in the FGF signaling pathway, its precise function remains unclear. Gain-of-function variants in several FGF receptors (FGFRs) are implicated in a wide spectrum of growth disorders from achondroplasia to overgrowth syndromes. In a unique case from a consanguineous union presenting with overgrowth, macrocephaly, retinal coloboma, large thumbs, severe varicose veins and learning disabilities, exome sequencing identified a homozygous nonsense FIBP variant. The patient's fibroblasts exhibit FIBP cDNA degradation and an increased proliferation capacity compared with controls. The phenotype defines a new multiple congenital abnormalities (MCA) syndrome, overlapping with the heterogeneous group of overgrowth syndromes with macrocephaly. The different clinical features can be explained by the alteration of the FGFR pathway. Taken together, these results suggest the implication of FIBP in a new autosomal recessive MCA.


Subject(s)
Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Eye Abnormalities , Genetic Variation , Growth Disorders , Learning Disabilities , Megalencephaly , Membrane Proteins/genetics , Abnormalities, Multiple/pathology , Adolescent , Consanguinity , Exome/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Homozygote , Humans , Male , Pedigree , Syndrome
20.
Eur J Endocrinol ; 173(6): 819-26, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26392472

ABSTRACT

BACKGROUND: MEN1, which is secondary to the mutation of the MEN1 gene, is a rare autosomal-dominant disease that predisposes mutation carriers to endocrine tumors. Most studies demonstrated the absence of direct genotype-phenotype correlations. The existence of a higher risk of death in the Groupe d'étude des Tumeurs Endocrines-cohort associated with a mutation in the JunD interacting domain suggests heterogeneity across families in disease expressivity. This study aims to assess the existence of modifying genetic factors by estimating the intrafamilial correlations and heritability of the six main tumor types in MEN1. METHODS: The study included 797 patients from 265 kindred and studied seven phenotypic criteria: parathyroid and pancreatic neuroendocrine tumors (NETs) and pituitary, adrenal, bronchial, and thymic (thNET) tumors and the presence of metastasis. Intrafamilial correlations and heritability estimates were calculated from family tree data using specific validated statistical analysis software. RESULTS: Intrafamilial correlations were significant and decreased along parental degrees distance for pituitary, adrenal and thNETs. The heritability of these three tumor types was consistently strong and significant with 64% (s.e.m.=0.13; P<0.001) for pituitary tumor, 65% (s.e.m.=0.21; P<0.001) for adrenal tumors, and 97% (s.e.m.=0.41; P=0.006) for thNETs. CONCLUSION: The present study shows the existence of modifying genetic factors for thymus, adrenal, and pituitary MEN1 tumor types. The identification of at-risk subgroups of individuals within cohorts is the first step toward personalization of care. Next generation sequencing on this subset of tumors will help identify the molecular basis of MEN1 variable genetic expressivity.


Subject(s)
Adrenal Gland Neoplasms/genetics , Bronchial Neoplasms/genetics , Multiple Endocrine Neoplasia Type 1/genetics , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Parathyroid Neoplasms/genetics , Pituitary Neoplasms/genetics , Thymus Neoplasms/genetics , Adolescent , Adrenal Gland Neoplasms/epidemiology , Adult , Age Distribution , Bronchial Neoplasms/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neuroendocrine Tumors/epidemiology , Pancreatic Neoplasms/epidemiology , Parathyroid Neoplasms/epidemiology , Pedigree , Pituitary Neoplasms/epidemiology , Thymus Neoplasms/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...